

HD32.3TC

Display touch chiaro e luminoso

Misure e valori calcolati direttamente visibili a display

C Lunga durata

Grande capacità di memoria per lunghi cicli di misurazione

O Dati immediatamente disponibili

Accessibile da remoto via FTP

Autonomo e portatile

Batteria che garantisce autonomia di lavoro per almeno 24 ore

Completamente conforme alle norme ISO

ISO 7730 - ISO 7726 - ISO 7243

Datalogger Comfort **Termico**

1D32.3TC

Data logger portatile ideale per analisi della qualità dell'aria indoor (IAQ) e per analisi del microclima.

Tutti i dati di cui si necessita, in un unico datalogger: indici WBGT, PMV (Predicted Mean Vote), PPD (Predicted Percentage of Dissatisfied), DR (draft rate), TU (local Turbulence intensity), HI (Heat Index), UTCI (Universal Thermal Climate Index), TEP (Perceived Equivalent Temperature), misure di CO2, VOC, PM1.0, PM2.5 e PM10.

Stima del decadimento naturale del virus SARS-CoV-2 sulle superfici.

- Tre ingressi per sonde con modulo SICRAM
- Riconoscimento automatico delle sonde all'accensione
- Porta seriale RS485per sonde ausiliarie

La grande capacità di memoria permette lunghi cicli di misura e la batteria ricaricabile garantisce un'autonomia di funzionamento di almeno 24 ore. Il display grafico LCD a colori retroilluminato con touch capacitivo rende la navigazione tra le diverse schermate e la visualizzazione dei dati facile e immediata.

La connessione Wi-Fi consente inoltre di inviare i dati di misura ad un server FTP.

Conforme alle norme ISO 7726 - ISO 7730 - ISO 7243 - ASHRAE Standard 55 e 62.1-2019.

Caratteristiche Tecniche

Misure microclimatiche / IAQ + polveri sottili

Norme di riferimento	ISO 7726 Misura Grado di Turbolenza - ISO 7730 Misura PMV /PPD - ISO 7730 Misura WBGT - ISO 7243
Formati esportazione	CSV - PDF
Display	LCD 480x800 pixels Touch screen capacitivo
Connettività	USB host e device RS485 alimentata Wi-Fi
Capacità di memoria	8 GB
Intervallo di memorizzazione	Da 1 secondo a 1 ora

Alimentazione	Batteria ioni di Litio ricaricabile via USB
Autonomia	24 ore in consumo massimo
Condizioni operative	-550 °C 090% UR no condensa
Grado di protezione	IP54
Incertezza strumento	± 1 digit @ 20 °C
Peso e dimensioni	185 x 90 x 40 mm - 500 gr
Ingressi	3 ingressi per sonde con modulo SICRAM 1 ingresso RS485 con connettore M12 a 8 poli per PMsense-P

Applicazioni

Le applicazioni per cui HD32.3TC fornisce un'ottima soluzione sono molteplici:

Applicazioni in ambito Microclima:

- √ Misura degli indici di comfort globale PMV e PPD de di disagio locale DR in **Ambiente Moderato**
- √ Misura dell'indice WBGT in **Ambiente Severo Caldo**

Applicazioni in ambito IAQ:

- √ Misura delle condizioni di comfort e della qualità dell'aria in ambienti interni come scuole, uffici, fabbriche...
- √ Analisi della sindrome da edificio malato (Sick Building Syndrome)
- √ Verifica dell'efficienza di sistemi di riscaldamento, ventilazione e condizionamento dell'aria (HVAC)
- √ Building Automation

SONDE	TP3207.2 / TP3207*	TP3276.2 / TP3275*	HP3201.2 / HP3201*	TP3204S*	HP3217.2R / HP3217R*	AP3203.2 / AP3203*
Sensore	Pt100	Pt100	Pt100	Pt100	T= Pt100 UR = capacitivo	NTC 10 kΩ
Campo di misura	-40100 °C	-3020 °C	4…80 °C	4…80 °C	T= -40100 °C UR= 0100%	0,025 m/s 080 °C
Accuratezza	1/3 DIN	1/3 DIN	Classe A	Classe A	T = 1/3 DIN UR = \pm 1,5% (090% UR) \pm 2% (90 100% UR) @ T=1535°C (\pm 1.5 + 1.5% misura) % @ T=restante campo	± (0,05 + 5% misura) m/s
Risoluzione	0,1 °C	0,1 °C	0,1 °C	0,1 °C	0,1 °C / 0,1 UR	0,01 m/s
Deriva in T @20°C	0,003% / °⊂	0,003% / ℃	0,003% / ℃	0,003% / ℃	0,02% UR/°C	0,06% /°⊂
Stabilità lungo termine	0,1 °C / anno	0,1 °C / anno	0.1 °C∕anno	0,1 °C / anno	0,1% UR/ anno	0,12 °C / anno
Tempo di risposta T ₉₅	15 minuti	15 minuti	15 minuti	15 minuti	15 minuti	
Capacità e autonomia serbatoio			15 cc 96 ore @ UR=50%, T=23℃	500 cc 15 giorni @ T= 40 °C		

^{*} Sonde provviste di cavo lunghezza 2 m.

Per monitoraggi di lunga durata, sono disponibile il treppiede VTRAP e il supporto per 4 sonde.

SONDE	HP3217B4	HP3217BV4	PMsense-P
Sensore		P _{atm} = piezoresistivo li ossido di metallo (<i>solo BV4</i>)	Principio di misura diffusione laser
Campo di misura	$P_{atm} = 3001250 \text{ hPs}$	/ U.R. = 0100% a / CO₂ = 05000 ppm 500 (adimensionale)	01000 μg/m³ (per ogni inquinante)
Accuratezza	$CO_2 = \pm (50 \text{ ppn})$	80% UR) / $P_{atm} = \pm 0.5 \text{ hPa}$ n + 3% della misura ura relativa qualitativa	<5% errore di linearità <3% ripetibilità
Risoluzione		1 %RH / P _{atm} = 0,1 hPa / Indice VOC = 1	0,1 μg/m³
Deriva in temperatura	utili	55 °C / 7001100 hPa) /°C (-2045 °C)	< 0,01 μg/m³ /°C
Stabilità a lungo termine	$\begin{aligned} \text{U.R.} &= <0, \\ \text{P}_{\text{atm}} &= \pm 0, \end{aligned}$.03°C/year 25 %UR/anno .33 hPa/anno la misura/5 anni	
Tempo di risposta		R. = 10 s : < 120 s	Frequenza di aggiorna- mento della misura 1 s

				Sonde e parar	netri misurati				
	TP3207.2 / TP3207	TP3276.2 / TP3275	HP3201.2 / HP3201	TP3204S	HP3217.2R / HP3217R	AP3203.2 / AP3203	HP3217B4	HP3217BV4	PMsense-P
Di quali sonde ho bisogno per misurare i seguenti indici?	Temperatura ambiente (T)	Temperatura globo- termometro (T _g)	ventilazione (le 2 sor	oulbo umido a naturale (T _{nw}) nde sono nbiabili)	Umidità Relativa e Temperatura Ambiente (UR – T)	Velocità dell'aria (V _a)	Temperatura ambiente - Umidità Relativa - Pressione Atmosferica CO ₂	Come HP3217B4 + Indice VOC	PM1.0, PM2.5 e PM10
WBGT	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$					
WBGT		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$				
Temperatura Media Radiante T _r		V			$\sqrt{}$	$\sqrt{}$			
PMV		$\sqrt{}$			$\sqrt{}$	$\sqrt{}$			
PPD					$\sqrt{}$	$\sqrt{}$			
TU						$\sqrt{}$			
DR						$\sqrt{}$			
HI					√				
UTCI		$\sqrt{}$			$\sqrt{}$	$\sqrt{}$			
TEP		$\sqrt{}$			$\sqrt{}$	$\sqrt{}$			
SARS-CoV-2					√		√	√	
CO ₂							$\sqrt{}$	$\sqrt{}$	
VOC								$\sqrt{}$	
PM1.0 / PM2.5 / PM10									√

 $\sqrt{\ }$ = una sola delle sonde indicate è sufficiente per ottenere la misura

 $\sqrt{\ }$ = per la ottenere la misura è necessaria la combinazione delle sonde

La barra colorata nelle schermate di indice PMV/PPD, heat index, temperatura UTCI e temperatura TEP indica la valutazione dello stress termico

Sulla base dei valori di T e UR ambientale, viene stimato il tempo di decadimento naturale del virus SARS-CoV-2 sulle superfici, secondo l'equazione pubblicata dal "U.S. Homeland Security department"

Т	25.8∘c 49.7%			
RH				
% Virus Decay	Hours	Days		
50% half-life	8.74	0.36		
99.99%	116.09	4.84		
99.9999%	174.14	7.26		
99.999999%	232.18	9.67		

Rilevamento di composti organici volatili (VOC) - dopo il tempo di adattamento all'ambiente, lo stato di inquinamento VOC è espresso come un indice variabile da 1 a 500 (adimensionale)

Visulizzazione grafica di 2 grandezze in tempo reale - Selezione grandezze e impostazione scale -Impostazione soglie di riferimento e abilitazione allarmi visivi

Member of GHM GROUP

Per garantire la qualità dei nostri strumenti, lavoriamo costantemente al miglioramento dei prodotti. Ciò potrebbe implicare cambiamenti nelle specifi che; vi consigliamo di controllare sempre il nostro sito web per la versione più recente della nostra documentazione.

Distribuito da: Zetalab s.r.l.

Via Umberto Giordano, 5 - 35132 Padova Tel 049 2021144 - Fax 049 2021143 www.zetalab.it - email: info@zetalab.it